μ子
组成基础粒子
费米子
第二代
基本相互作用引力, 电磁力,
弱力
符号μ
反粒子反μ子 (μ+
)
理论
发现卡尔·安德森 (1936)
质量

1.883531475(96)×10 kg

105.6583715(35) MeV/c
平均寿命2.1969811(22)×10 s
电荷?1 e
色荷None
自旋2

μ子渺子muon)是一种带有一个单位负电荷、自旋为1/2的基本粒子。μ子与同属于轻子的电子和τ子具有相似的性质,人们至今未发现轻子具有任何内部结构。历史上曾经将μ子称为μ介子,但现代粒子物理学认为μ子并不属于介子(参见历史)。

每一种基本粒子都有与之对应的反粒子,μ子的反粒子是反μ子(反渺子,antimuon)。反μ子(μ+)与μ子(μ-)相比只是带一个单位的正电荷,质量、自旋等性质完全相同,因此又叫做正μ子。

与其他带电的轻子一样,μ子有一个与之伴随的中微子——μ中微子(νμ)。μ中微子与电中微子νe参与的反应不同,是两种不同的粒子。

性质

μ子的质量为105.7MeV/c,大约是电子质量的200倍。由于μ子的性质与电子相似,因而可以把μ子想象成一个“加重版”的电子。由于质量更大,μ子在电磁场中的加速和偏转比电子要慢,发出的轫致辐射也较电子少,这使得μ子比相同能量的电子能够穿透更厚的物质。例如,宇宙射线中的μ子能够穿透厚达数百千米的大气层到达地表,甚至能到达数百米深的矿井之中。

μ子的质量和能量远大于常见放射性衰变的衰变能,因此μ子不能通过放射性衰变产生。μ子可以在加速器上进行的高能物理实验中通过强子参与的核反应产生,此外,宇宙射线与地球大气作用也会产生大量μ子,这也是已知唯一的天然的μ子来源(见来源)。

μ子是一种不稳定的亚原子粒子,平均寿命为2.2微秒。与其他不稳定的亚原子粒子相比,μ子的寿命相对较长(仅短于中子的881.5秒)[来源请求]

历史

μ子最早由卡尔·安德森和赛斯·内德梅耶于1936年发现。他们在研究宇宙射线在电磁场中的运动时,发现了一种弯曲程度不同于电子和其他已知粒子的径迹。根据在磁场中的偏转方向能够判断这种粒子带有带负电,对于同样的速度,这种粒子的偏转半径比电子的大得多,同时又比质子的小的多。他们假定这种粒子带有与电子相同的电荷量,由此他们计算出这种粒子的质量介于电子和质子之间,大约是电子的200倍,据此他们将这种粒子命名为“Mesotron”,意为“中间的粒子”。1937年,J. C. Street 和 E. C. Stevenson 在云室实验中再次确认了μ子的存在。

在此之前,日本理论物理学家汤川秀树已经预言过介子的存在

“对海森堡和费米的理论作如下改进是很自然的,重粒子从中子态到质子态的跃迁不总是伴随着轻粒子的发射,有时也会发射另一个重粒子。”

由于质量与预言的范围相符,人们认为μ子就是汤川秀树理论中的介子,因此将它称为μ介子(mu meson)。但是后来发现μ子并不参与强相互作用,从而与理论不符。汤川预言的粒子直到1947年才(同样是从宇宙射线中)被发现。在此之前,介子指的是质量介于电子和质子之间的(那种)粒子,为了区别这两种“介子”,将之前安德森发现的并被称为μ介子,而这种新的介子则被称为π介子。

后来,更多的介子在加速器实验上被人们发现,最终人们发现最早发现的μ介子不仅与π介子性质差异很大,而且与其他介子的性质差异也很大。这种差异主要有以下几点:

  1. π介子和其他新发现的介子能够参与强相互作用,而μ介子不能;
  2. 新发现的介子在核反应中的行为与π介子相似,而与μ介子不同;
  3. μ介子衰变后产生一个中微子和一个反中微子,而π介子和其他介子则产生一个中微子或一个反中微子。

直到1970年代,粒子物理的标准模型建立以后,人们才最终明白,除μ介子以外的其他所有介子都是强子,即由夸克组成的粒子,因而可以参与强相互作用。在夸克理论中,介子不再根据粒子的质量来定义,而是重新定义为“由两个夸克(一个正夸克和一个反夸克)构成的粒子”(由三个夸克构成的粒子叫做重子)。此时人们发现,μ介子并不存在夸克结构,是一种类似于电子的基本粒子。从此人们不再称其为“μ介子”,而是简单地称为μ子(muon)。

139001.net
问题反馈联系QQ:1215,也可发qq邮箱