在数学,特别是微分几何中,一个联络形式connection form)是用活动标架与微分形式的语言处理联络数据的一种方式。

历史上联络形式由埃利·嘉当在二十世纪上半叶引入,作为他活动标架方法的一部分,也是其主要促进因素之一。联络形式一般取决于标架的选取,从而不是一个张量性对象。在嘉当最初的工作之后,涌现出联络形式的各种推广与重新解释。特别地,在一个主丛上,一个主联络是将联络形式自然重新解释为一个张量性对象。另一方面,联络形式作为定义在微分流形上的微分形式与在一个抽象的主丛上相比,有其优越性。从而,尽管它们不满足张量性,联络形式依然被使用,因为利用它们计算相对简单。在物理学中,联络形式在规范理论中通过规范共变微分也广泛应用。

与向量丛的每个基相伴的联络形式是微分 1-形式矩阵。联络形式没有张量性因为在基变化下,联络形式的变换涉及到转移函数的外微分,与列维-奇维塔联络的克里斯托费尔符号非常类似。一个联络形式的主要张量性不变量是其曲率形式。如果有将向量丛与切丛等价的一个焊接形式,则有另一个不变量:挠率形式。在许多情形,考虑有附加结构的向量丛上的联络形式:即带有结构群的纤维丛。

向量丛

预备

向量丛上的标架丛

E 是光滑流形 M 上纤维维数为 k 的一个向量丛。E 的一个局部标架E 的局部截面的一个有序基。

e=(eα)α=1,2,...,kE 上一个局部标架。这个标架可用来表示 E 的任何局部截面。假设 ξ 是一个局部截面,定义在 e 的同一个开子集上,则

ξ = α = 1 k e α ξ α ( e ) {\displaystyle \xi =\sum _{\alpha =1}^{k}e_{\alpha }\xi ^{\alpha }(\mathbf {e} )}

其中 ξ(e) 表示 ξ 在标架 e 中的分量。写成一个矩阵方程,有

ξ = e [ ξ 1 ( e ) ξ 2 ( e ) ξ k ( e ) ] = e ξ ( e ) . {\displaystyle \xi ={\mathbf {e} }{\begin{bmatrix}\xi ^{1}(\mathbf {e} )\\\xi ^{2}(\mathbf {e} )\\\vdots \\\xi ^{k}(\mathbf {e} )\end{bmatrix}}={\mathbf {e} }\,\xi (\mathbf {e} ).}

外联络

参见:外共变导数

E 上一个联络是一类特殊的微分算子

D : Γ ( E ) Γ ( E Ω 1 M ) {\displaystyle D:\Gamma (E)\rightarrow \Gamma (E\otimes \Omega ^{1}M)}

这里 Γ 表示一个向量丛的局部截面层,ΩMM 上微分 1-形式。特别地,如果 vE 的一个局部截面,f 是一个光滑函数,则

D ( f v ) = v ( d f ) + f D v {\displaystyle D(fv)=v\otimes (df)+fDv}

这里 dff 的外导数。

有时习惯于将 D 的定义延拓到任意 E-值形式,这样讲其视为 E 与整个微分形式外代数的张量积上一个微分你算子。给定一个外联络 D 满足这个相容性质,则存在 D 的惟一延拓:

D : Γ ( E Ω M ) Γ ( E Ω M ) {\displaystyle D:\Gamma (E\otimes \Omega ^{*}M)\rightarrow \Gamma (E\otimes \Omega ^{*}M)}

使得

D ( v α ) = ( D v ) α + ( 1 ) deg v v d α {\displaystyle D(v\wedge \alpha )=(Dv)\wedge \alpha +(-1)^{{\text{deg}}\,v}v\wedge d\alpha }

这里 v 是次数为 deg v 的齐次元素。换句话说,D 是分次模 Γ(E ⊗ ΩM) 上的一个导子。

联络形式

联络形式出现在将外联络应用于一个特定的标架 e。当外联络应用于 eα,有惟一的 M 上 1-形式 k × k 矩阵 (ωα) 使得

D e α = β = 1 k e β ω α β . {\displaystyle De_{\alpha }=\sum _{\beta =1}^{k}e_{\beta }\otimes \omega _{\alpha }^{\beta }.}

利用联络形式,E 任何截面的外联络现在可以表示出来,假设 ξ = Σα eαξ,则

D ξ = α = 1 k D ( e α ξ α ( e ) ) = α = 1 k e α d ξ α ( e ) + α = 1 k β = 1 k e β ω α β ξ α ( e ) . {\displaystyle D\xi =\sum _{\alpha =1}^{k}D(e_{\alpha }\xi ^{\alpha }(\mathbf {e} ))=\sum _{\alpha =1}^{k}e_{\alpha }\otimes d\xi ^{\alpha }(\mathbf {e} )+\sum _{\alpha =1}^{k}\sum _{\beta =1}^{k}e_{\beta }\otimes \omega _{\alpha }^{\beta }\xi ^{\alpha }(\mathbf {e} ).}

在两边取分量,

D ξ ( e ) = d ξ ( e ) + ω ξ ( e ) = ( d + ω ) ξ ( e ) {\displaystyle D\xi (\mathbf {e} )=d\xi (\mathbf {e} )+\omega \xi (\mathbf {e} )=(d+\omega )\xi (\mathbf {e} )}

其中 d 与 ω 分别表示外导数与一个 1-形式矩阵,作用在 ξ 的分量上。反之,一个 1-形式矩阵 ω 先天足以完全确定在 e 所定义的开子集上局部联络。

标架的改变

为了将 ω 延拓到一个合适的整体对象,必须检验选取 E 不同的截面时的行为。为了表明取决于 e 的选取写成 ωα = ωα(e)。

假设 e′ 是另一个局部基,则有一个可逆 k × k 矩阵函数 g 使得

e = e g , i.e.,  e α = β e β g α β . {\displaystyle {\mathbf {e} }'={\mathbf {e} }\,g,\quad {\text{i.e., }}\,e'_{\alpha }=\sum _{\beta }e_{\beta }g_{\alpha }^{\beta }.}

将外联络应用到两边,给出了 ω 的变换法则:

ω ( e g ) = g 1 d g + g 1 ω ( e ) g . {\displaystyle \omega (\mathbf {e} \,g)=g^{-1}dg+g^{-1}\omega (\mathbf {e} )g.}

特别注意 ω 不满足张量性变换,因为从一个标架到另一个标架的法则涉及到转移矩阵 g 的导数。

整体联络形式

如果 {Up} 是 M 的一个开覆盖,且每个 Up 携有 E 的一个平凡化 ep,则利用在重叠区域上局部标架的黏合数据可以定义一个整体联络形式。具体地,M 上一个联络形式是定义在每个 Up 上的 1-形式矩阵 ω(ep) 的一个系统,满足下列相容性条件

ω ( e q ) = ( e p 1 e q ) 1 d ( e p 1 e q ) + ( e p 1 e q ) 1 ω ( e p ) ( e p 1 e q ) . {\displaystyle \omega (\mathbf {e} _{q})=(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})^{-1}d(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})+(\mathbf {e} _{p}^{-1}\mathbf {e} _{q})^{-1}\omega (\mathbf {e} _{p})(\mathbf {e} _{p}^{-1}\mathbf {e} _{q}).}

这个相同性条件特别地确保 E 的一个截面的外联络,当抽象地视为 E ⊗ ΩM 的一个截面时,与定义联络中基截面的选取无关。

曲率

E 上一个联络形式的曲率 2-形式定义为

Ω ( e ) = d ω ( e ) + ω ( e ) ω ( e ) . {\displaystyle \Omega (\mathbf {e} )=d\omega (\mathbf {e} )+\omega (\mathbf {e} )\wedge \omega (\mathbf {e} ).}

不像联络形式,曲率在标架的变化下表现为张量性,可以利用庞加莱引理直接验证。特别地,如果 ee g 是标架的一个变化,则曲率 2-形式变换为

Ω ( e g ) = g 1 Ω ( e ) g . {\displaystyle \Omega (\mathbf {e} \,g)=g^{-1}\Omega (\mathbf {e} )g.}

此变换法则的一种理解如下。设 e 是对应于 e 的对偶基。则 2-形式

Ω = e Ω ( e ) e {\displaystyle \Omega ={\mathbf {e} }\Omega (\mathbf {e} ){\mathbf {e} }^{*}}

与标架的选取无关。特别地,Ω 是 M 上一个向量值 2-形式,取值于自同态环 Hom(E,E)。用符号表示,

Ω Γ ( Ω 2 M Hom ( E , E ) ) . {\displaystyle \Omega \in \Gamma (\Omega ^{2}M\otimes {\text{Hom}}(E,E)).}

使用外联络 D,曲率自同态由

Ω ( v ) = D ( D v ) = D 2 v {\displaystyle \Omega (v)=D(Dv)=D^{2}v\,}

给出,对 vE。从而曲率是序列

Γ ( E )   D   Γ ( E Ω 1 M )   D   Γ ( E Ω 2 M )   D     D   Γ ( E Ω n ( M ) ) {\displaystyle \Gamma (E)\ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Omega ^{1}M)\ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Omega ^{2}M)\ {\stackrel {D}{\to }}\ \dots \ {\stackrel {D}{\to }}\ \Gamma (E\otimes \Omega ^{n}(M))}

不能成为链复形(在德拉姆上同调的意义下)的度量。

焊接与挠率

假设 E 的纤维维数 k 等于流形 M 的维数。在此情形,向量丛 E 有时带有出联络外的附加数据:一个焊接形式英语solder formsolder form)。一个焊接形式是一个整体定义的向量值 1-形式 θ ∈ Γ(Ω(M,E)) 使得映射

θ x : T x M E x {\displaystyle \theta _{x}:T_{x}M\rightarrow E_{x}}

对所有 xM 是线性同构。如果给定了一个焊接形式,则可以定义联络的挠率为(用外联络表示):

Θ = D θ . {\displaystyle \Theta =D\theta .\,}

挠率 Θ 是 M 上一个 E-值 2-形式。

一个焊接形式与相伴的挠率都可用 E 的一个局部标架 e 描述。如果 θ 是一个焊接形式,则可分解为标架分量

θ = i θ i ( e ) e i . {\displaystyle \theta =\sum _{i}\theta ^{i}(\mathbf {e} )e_{i}.}

那么挠率的分量为

Θ i ( e ) = d θ i ( e ) + j ω j i ( e ) θ j ( e ) . {\displaystyle \Theta ^{i}(\mathbf {e} )=d\theta ^{i}(\mathbf {e} )+\sum _{j}\omega _{j}^{i}(\mathbf {e} )\wedge \theta ^{j}(\mathbf {e} ).}

与曲率一样,可以证明 Θ 在标架的变化与反变张量变现类似

Θ i ( e g ) = j g j i Θ j ( e ) . {\displaystyle \Theta ^{i}(\mathbf {e} \,g)=\sum _{j}g_{j}^{i}\Theta ^{j}(\mathbf {e} ).}

与标架无关的挠率可由标架分量重新得到:

Θ = i e i Θ i ( e ) . {\displaystyle \Theta =\sum _{i}e_{i}\Theta ^{i}(\mathbf {e} ).}

例:列维-奇维塔联络

假设 M 带有一个黎曼度量,考虑 M 的切丛上的列维-奇维塔联络。切丛上一个局部标架是一个有序向量场 e = (ei | i = 1,2,...,n=dim M) 定义在 M 的一个开子集上,在定义域每一点上线性无关。克里斯托费尔符号定义了列维-奇维塔联络

e i e j = k = 1 n Γ i j k ( e ) e k . {\displaystyle \nabla _{e_{i}}e_{j}=\sum _{k=1}^{n}\Gamma _{ij}^{k}(\mathbf {e} )e_{k}.}

如果 θ = (θi | i=1,2,...,n),表示余切丛的对偶基,使得 θi(ej) = δij(克罗内克δ),则联络形式为

ω i j ( e ) = k Γ k i j ( e ) θ k . {\displaystyle \omega _{i}^{j}(\mathbf {e} )=\sum _{k}\Gamma _{ki}^{j}(\mathbf {e} )\theta ^{k}.}

利用联络形式,一个向量场 v = Σieiv 上的外联络由

D v = k e k ( d v k ) + j , k e k ω j k ( e ) v j . {\displaystyle Dv=\sum _{k}e_{k}\otimes (dv^{k})+\sum _{j,k}e_{k}\otimes \omega _{j}^{k}(\mathbf {e} )v^{j}.}

给出。我们可以重新得到列维-奇维塔联络,在通常的意义下,将此式与 ei 缩并

e i v = D v , e i = k e k ( e i v k + Σ j Γ i j k ( e ) v j ) . {\displaystyle \nabla _{e_{i}}v=\langle Dv,e_{i}\rangle =\sum _{k}e_{k}\left(\nabla _{e_{i}}v^{k}+\Sigma _{j}\Gamma _{ij}^{k}(\mathbf {e} )v^{j}\right).}

曲率

列维-奇维塔联络的曲率 2-形式是一个矩阵 (Ωi),由

Ω i j ( e ) = d ω i j ( e ) + k ω k j ( e ) ω i k ( e ) . {\displaystyle \Omega _{i}^{j}(\mathbf {e} )=d\omega _{i}^{j}(\mathbf {e} )+\sum _{k}\omega _{k}^{j}(\mathbf {e} )\wedge \omega _{i}^{k}(\mathbf {e} ).}

给出。为了简单起见,假设标架 e 是完整的,故 dθ=0。使用重复指标的求和约定,则

Ω i j = d ( Γ q i j θ q ) + ( Γ p k j θ p ) ( Γ q i k θ q ) = θ p θ q ( p Γ q i j + Γ p k j Γ q i k ) ) = 1 2 θ p θ q R p q i j {\displaystyle {\begin{array}{ll}\Omega _{i}^{j}&=d(\Gamma _{qi}^{j}\theta ^{q})+(\Gamma _{pk}^{j}\theta ^{p})\wedge (\Gamma _{qi}^{k}\theta ^{q})\\&\\&=\theta ^{p}\wedge \theta ^{q}\left(\partial _{p}\Gamma _{qi}^{j}+\Gamma _{pk}^{j}\Gamma _{qi}^{k})\right)\\&\\&={\tfrac {1}{2}}\theta ^{p}\wedge \theta ^{q}R_{pqi}{}^{j}\end{array}}}

其中 R 是黎曼曲率张量。

挠率

列维-奇维塔联络是切丛上惟一挠率为零的度量联络。为了描述挠率,注意到向量丛 E 是切丛。这带有一个典范焊接形式(有时称为典范 1-形式),它是对应于切丛的恒同自同态的 Hom(TM,TM) = TM ⊗ TM 的截面 θ。在标架 e 中,焊接形式为 θ = Σi ei ⊗ θ,其中 θ 是对偶基。

联络的挠率由 Θ = D θ 给出,或用焊接形式的标架分量表示为

Θ i ( e ) = d θ i + j ω j i ( e ) θ j . {\displaystyle \Theta ^{i}(\mathbf {e} )=d\theta ^{i}+\sum _{j}\omega _{j}^{i}(\mathbf {e} )\wedge \theta ^{j}.}

为简单起见再次假设 e 是完整的,此表达式简化为

Θ i = Γ k j i θ k θ j {\displaystyle \Theta ^{i}=\Gamma _{kj}^{i}\theta ^{k}\wedge \theta ^{j}}

它等于零当且仅当 Γkj 的下指标是对称的。

结构群

当向量丛 E 携有一个结构群时,可以构造更特别的一类联络形式。这等于是在 E 上有与李群 G 相关的一类优先的标架 e。例如,若 E 上有一个度量,则考虑在每一点形成一个标准正交基的标架。结构群则为正交群,因为这个群保持标架的标准正交性。其它例子包括:

www.139001.net
问题反馈联系QQ:1215,也可发qq邮箱。